SAND85—0958 Distribution
Unlimited Release " Category UC—38
Printed December 1985

Task Planning for Control
of a Sensor-Based Robot

R. Charleene Lennox* and George F. Luger
Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

Raymond W. Harrigan
Intelligent Machine Systems Division
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

This paper is divided into four major sections. The first is an introduction to the
research area. The second provides a brief overview of the history of “planning” in
artificial intelligence (AI), while the third part of the paper describes the representa-

tional power of very-high-level computer languages and how this power may be
brought to planning in robotics research. Finally, we describe our PROLOG-driven
Planner for controlling a PUMA arm used for object manipulation and note the future
directions of this work.

*Present address: Digital Subsystems Division I

Sandia National Laboratories
Albuquerque, NM 87185

Acknowledgments

We gratefully acknowledge Greg Starr’s assistance
with the PUMA-560 robot and the VAL-II robot
control language. Greg Donohoe provided invaluable
help in the area of computer hardware. Greg Donohoe
and Mike Daily were responsible for the vision-
sensing subsystem. Alan Christiansen’s paper (which
has been submitted for publication), “The History of
Planning Methodology: An Annotated Bibliography,”
was especially helpful.

Task Planning for Control
of a Sensor-Based Robot

Introduction

Intelligent machine systems will necessarily
require the integration of sensors and artificial intelli-
gence (AI) techniques with hierarchical manipulator
control to provide a system capable of semiautono-
mous operation. Current robot systems have very
limited sensing capability and achieve positioning
through open-loop control techniques. Such systems
have serious limitations in that there is no ability to
adapt to unstructured or changing environments. This
is a particularly severe limitation in hazardous envi-
ronments where an inappropriate action can result in
acute danger to personnel and equipment.

A desired goal in robotics technology is the devel-
opment of sensor-based control, in which a general
description of a task is taken by a machine controller,
and a detailed plan is formulated internally and exe-
cuted to accomplish the task. The key advantage of
such robot systems would be to put the human opera-
tor in a supervisory role, making the robot system
more efficient and semiautonomous in a wide variety
of application areas.

Semiautonomous robot systems controlled at the
task level must be highly integrated, sensor-rich sys-
tems. To the extent that the human is removed from
the control loop, the capabilities of sight, touch, rea-
soning, and movement must be added, although they

humans. A common goal has been to discover princi-
ples that all intelligent information-processors must
use. This research has produced techniques in the
basic areas of knowledge representation, problem
solving and planning, logic, language understanding,
learning and perception—areas that are especially
relevant to a semiautonomous robot system.

Task planning is problem solving in a noncommu-
tative system and, as such, requires that a good repre-
sentation of the problem be selected as well as an
efficient control strategy for seeking a solution. The
chosen representation not only must provide tech-
niques for modeling the environment in which the
robot finds itself and for describing the process of
changing one world state to another, but must also be
compatible with the evolutionary development of the
robot system., Because Al programming languages
that have been developed are modular, changes in the
knowledge base do not require extensive changes to
the existing programs.

Most existing techniques and representations for
generating plans were developed for purely cognitive
problems and have rarely been implemented in real-
time control of robots. This report summarizes work
performed over the past year in which an Al-based
planner was integrated with a vision system and a
PUMA-560 robot to complete specified tasks involv-
ing the sorting of objects on a table. The Planner,

are not achieved in the same way. System consider-
ations include: (1) processing of sensor data to derive
relevant information about the operating environ-
ment, (2) task planning based on artificial intelligence
techniques to act logically on information about the
environment as well as to formulate manipulator com-
mand sequences, and (3) manipulator action to carry
out the task.

Of primary importance in making a robot system
semiautonomous is the use of Al techniques. Much
research in the field of Al has been directed toward
developing an information-processing theory of intel-
ligence. For some (computer scientists and engineers),
the purpose has been to understand how machines can
be made to exhibit intelligence. Others (psychologists,
linguists, and philosophers) have used the computer
as a tool to understand intelligent behavior in

written in PROLOG, generates the plans and moni-
tors the execution of the plan by using feedback from
the manipulator’s force sensor and the vision system.
Work continues on replanning and error recovery.

A general history of planners and a description of
high-level languages are given to provide background
for the rest of the paper.

A Historical Review of Al
Planners

Planning as a problem-solving technique that pro-
duces a set of primitive operations to be carried out to
achieve a goal has been the subject of much research
over the past 15 years. An important early problem

solver, The General Problem Solver (GPS), was using one set of assertions about the initial state and
designed in 1957 by the Carnegie-RAND group: Allen another set describing the effect of primitive opera-
Newell, C. J. Shaw, and Herbert A. Simon. Both tions on that state. The construction proof method

Simon and Newell had maintained a long-term inter- produces the set of operations (state transitions) that
est in human problem-solving methods. They identi- would create the desired state. Applications of the
fied a number of these problem-solving techniques program include puzzle solving, computer program
using the transcripts from several experiments in generation, and robot planning.
which subjects were asked to “think aloud” as they During the mid-1960s four large robotics projects
were solving various kinds of puzzles. Among the were initiated at Stanford, SRI, MIT, and the Univer-
techniques that were made a part of GPS was means- sity of Edinburgh. While all the projects included
ends analysis, which compares the current state of visual perception and scene analysis, planning, and
the world (where we are) with the goal state (where world modeling, their emphases were different. The
we want to be). If these are the same, the problem robots at Stanford, MIT, and Edinburgh were manip-
is solved. Otherwise, an operator or function that ulators, whereas SRI’s Shakey was a mobile robot.
will reduce the difference between the two states is The Shakey project focused on development of the
selected and then applied. This sequence is continued problem-solving system (with limited hardware capa-
until the current state matches the goal state. bilities in the vision system); the other projects em-
GPS succeeded in simulating human problem phasized development of the vision system using
solving, but only in a limited problem domain. The somewhat ad hoc planners.
degree of specialized knowledge required to solve a From these projects, it became evident that each
class of problems was much greater than the designers component of the system required further research.
had anticipated and made a general problem solver Vision needed the development of high-resolution
infeasible. However, GPS demonstrated that a ma- cameras and of methods for acquiring and under-
chine can solve problems by functional reasoning and standing sensory data. The intelligent control of effec-
clarified some of the problem-solving procedures that tors required design of mechanical (hand-arm)
human beings had been using all along. The tech- devices, of optical range finders, and of special tactile,
niques of GPS were to become part of a number of force, and torque sensors as well as development of
planners developed over the next 15 years. real-world representations of the objects to be manip-
At about the time GPS appeared, John McCarthy ulated. The design and development of the planner for
of MIT was working on a similar idea. He proposed Shakey revealed a number of areas for further plan-
Advice Taker, a program that would use common ning research including improved efficiency, handling
sense to solve a variety of problems and would interac- of interacting goals, monitoring the execution of plans,
tively take advice in order to improve its performance. error recovery and replanning, and learning. Manipu-
Unlike GPS, Advice Taker was never fully imple- lators, as well as mobile robots, required efficient
mented. However, the idea of getting advice from an algorithms for finding paths through a complex world.
expert to help solve a problem has been used in the Since these early efforts, research has focused on
design of several planners and at least-one speech developing-the-individual-components.- Only recently —————
recognition program, HEARSAY. Two important have the components again been integrated into |
by-products of McCarthy’s work on the Advice Taker robotic systems.
were the creation of LISP and the first implementa- Green’s QA3 program was the basis for a planning
tion of a time-sharing system. system within Shakey. In QA3, as in GPS, the various
In 1965 Alan Robinson described an efficient states of the world were completely independent; no
method of proving theorems in first-order predicate information from one state was assumed to carry
calculus (Robinson, 1965). AI groups at MIT, Stan- through to the next. Each operator required a large

ford Research Institute (SRI), and the University of number of facts to describe completely the state of the
Edinburgh recognized that this Resolution Method of world, some describing relationships that were

theorem proving could be used to construct problem changed by the action, and others (frame axioms)
solutions. Cordell Green developed the QA3 program describing relationships that remained the same.
to explore the use of the Resolution Method for solv- Since most actions leave most of the world unchanged,
ing state-transformation problems (Green, 1969). The Stanford Research Institute Problem Solver
world is modeled as a state space, actions as state (STRIPS) was introduced to allow the system to focus
transitions. The system attempts to prove that a state its attention on the important things, the things that
exists in which the goal condition (or theorem) is true do change. STRIPS eliminated the frame axioms and

adopted an assumption that an action leaves all rela-
tions in the model unchanged unless specified other-
wise. This assumption became known as the “STRIPS
assumption.” The changes were denoted using two
lists for each STRIPS operator: an “add list” and a
“delete list.” The add list contains those relations that
are always true after the action is performed, and the
delete list contains those relations that are not to be
true afterwards, even if they were true before. Also
associated with each operator are the preconditions
that must be true before the operator can be applied.

To achieve a goal, an appropriate operator is
selected. Making the operator’s preconditions be true
then becomes the subgoals that are achieved through
recursive application of the planner. This method of
planning is called problem reduction and gives a hier-
archical structure to plans.

In addition to finding a partial solution to the
frame problem, Fikes and Nilsson sought to minimize
the amount of search done in a planner based on
resolution-based theorem proving by incorporating
means-ends analysis to guide the selection of opera-
tors (Fikes and Nilsson, 1971). The search strategy for
STRIPS is depth-first with backtracking. Although
means-ends analysis restricts the number of operators
that apply to a goal, there may still be several applica-
ble operators and no way of knowing whether the
subgoals of an operator can be satisfied or whether the
attempt to satisfy them eventually leads to a dead
end. STRIPS assumes that a goal can be completely
satisfied and proceeds to fill in all the details of the
plans to meet the subgoals. If one of the subgoals
proves to be unsatisfiable, the work done on the plan is
wasted. Therefore, this search strategy can be highly
inefficient and is limited to finding plans with only a
few steps.

A second problem with STRIPS is that it is a

(1) recognize and omit unneeded steps in the
plan,

(2) reexecute a portion of the plan if necessary,
and

(3) repeat an unsuccessful portion of the plan
with different arguments.

Perhaps a more obvious function of the general-
ized plan is its use as a single macro action
(MACROP). With the triangle table format, it is
possible to use part or all of a MACROP as a single
component in a new plan to solve a similar problem.
This “learning” of plans can reduce planning time of
subsequent problems and make the formulation of
longer plans possible.

STRIPS, one of the first successful planners,
became the basis for many planners that followed.
One goal of research in the early 1970s seemed to be to
overcome the limitations of STRIPS by designing
planners that could solve problems with some degree
of complexity or could handle interacting goals. Later
planners incorporated methods for dealing both with
complex problems and with interacting goals.

Attempts to improve efficiency have focused on
reducing the search space by use of hierarchical plan-
ning, domain-specific information, and meta-planning.
ABSTRIPS extended STRIPS by adding the capabil-
ity for hierarchical planning (Sacerdoti, 1973).
Although all plans have a hierarchical structure, hier-
archical planners generate a hierarchy of represen-
tations of a plan in which the highest is a simplifica-
tion, or abstraction, of the plan and the lowest is a
detailed plan, sufficient to solve the problem. Because
a complete plan is formulated at each level of the
hierarchy, dead ends can be detected early in the
search. A means of ignoring details that obscure or

linear system and, thus, cannot solve all problems. A
system based on the linear assumption expects that a
goal can be achieved by first formulating plans to
achieve each of the independent subgoals. The concat-
enation of these subplans in an arbitrary order forms a
plan to achieve the goal. Because it is assumed that
the subgoals do not interact, no provision is made for
the interleaving of subplans.

A second version of Shakey added a plan execu-
tive component (PLANEX) to the system (Fikes
et al., 1972). PLANEX monitored the execution of a
plan and instigated replanning when the plan failed.
Another major addition was a process for generalizing
a plan produced by STRIPS. This generalized plan
was stored in a tabular form called a “triangle table.”
This addition added flexibility to the supervision of
execution since it was now possible to

complicate a solution to a problem is also provided.

In ABSTRIPS the hierarchy is defined in terms of
the criticality of the plan details. Criticality is man-
ually assigned, and at each level only those precondi-
tions with the current level of criticality are consid-
ered in the formation of a plan. LAWALY is a planner
that has proved to be more efficient than ABSTRIPS
because it combines two approaches to efficient plan-
ning (Siklossy and Dreussi, 1973). It partitions the
problem-solving operators into hierarchies and con-
structs domain-specific procedures for each problem
domain. NOAH has a certain similarity to LAWALY
in that the hierarchy involves problem-solving opera-
tors.

NOAH (Nets of Action Hierarchies) abstracts
problem-solving operators so that at the higher levels,
the plans are made up of generalized operators. At the

lowest level, the plan consists of the primitive opera-
tors of the problem domain. NOAH uses a representa-
tion for plans called a procedural net. The net is built
by adding nodes that are more specific versions of the
operators represented by their parents. When the plan
is completed, the procedural net is used to monitor
execution.

MOLGEN, a knowledge-based program that
assists molecular geneticists in planning experiments,
abstracts not only the operators but also the objects in
its problem space. Stefik wrote a planner for MOL-
GEN that extended the work of hierarchical planning
to include a layered control structure for meta-
planning, planning about planning (Stefik, 1980). The
lowest layer is the planning space that uses the hierar-
chy of operators and objects. The higher levels allow
MOLGEN to treat the planning process itself as
another task for the planner to solve. Decisions about
the design of the plan are made in the second layer,
and strategies that dictate design decisions are made
on the highest level.

Also concerned with meta-planning, Wilensky
and Faletti included methods for changing the strate-
gies used to formulate plans (Wilensky, 1983; Faletti,
1983). Both argued for incorporation of common sense
into the planning process.

Because of the inability of linear planners to solve
certain problems, a number of planners were written
to investigate ways of handling such problems.
HACKER was the first planner that included a stra-
tegy for doing this (Sussman, 1973). Its method was to
create a plan that was “almost right” and then debug
it. This debugging capability was also used to adapt an
old procedure for handling problems previously solved
to a new procedure to solve a new problem. WAR-
PLAN first tried to formulate a plan using the linear

,,,,, __assumption (Warren, 1974). If a plan cannot be found,-

then subgoals are selectively interleaved until a plan is
found. WARPLAN is complete; that is, it will find a
plan if one exists. WARPLAN was the first planner
written in PROLOG.

INTERPLAN depends on the hierarchical struc-
ture of plans to solve problems it cannot solve under
the linear assumption (Tate, 1975). A subgoal that
conflicts with a previously achieved goal is “promoted”
up a level in the hierarchical structure. Promotion and
some reorderings are repeated until a plan is found. It
should be noted that not all problems can he solved by
INTERPLAN. Waldinger’s strategy for handling
interacting subgoals is to develop a plan for one sub-
goal and then modify that plan to achieve the second
subgoal as well (Waldinger, 1981). He called his tech-
nique “goal regression.”

10

The four programs mentioned above generated
initial plans that violated ordering constraints and
then fixed the plans by reordering component opera-
tors. NOAH and Stefik’s MOLGEN use a “least-
commitment” approach that puts off any ordering of
operators until it is clear that a particular ordering is
necessary to avoid conflicts. MOLGEN will not order
operators until constraints are available to guide it.
NOAH has “critics” that detect and correct interac-
tions using the declarative, or plan, knowledge that is
represented in the procedural net.

Until the late 1970s, planners were designed to
produce complete plans. The planners of McDermott
and the Hayes-Roths are based on human approaches
to planning and almost never construct a complete
plan (McDermott, 1978; Hayes-Roth and Hayes-
Roth, 1978). McDermott sees planning and execution
as interleaved processes. The planner picks a subgoal
to work on according to scheduling rules. If the sub-
goal is a primitive, it is executed immediately. Other-
wise, it is reduced to its subgoals.

The Hayes-Roths’ approach is modeled after a
human planning strategy of developing a plan in a
piecemeal fashion; as opportunities present them-
selves, detailed problem-solving actions are included
in the developing plan. Thus, opportunistic planning
includes a bottom-up, as well as a top-down, compo-
nent. The Hayes-Roths used for their planner a model
developed for the HEARSAY II system for speech
understanding. Knowledge sources, or experts, parti-
cipate in the planning process, using a global data
structure called a “blackboard” for communication.
The structure of the plans is heterarchical rather than
hierarchical.

Recent research has dealt with issues concerning
real-time control of a robot by a planning system.

——Some-of -the-issues—are—error-recovery (Ward and—

McCalla, 1983); replanning (Cromarty et al., 1984);
interactive planners (Wilkins, 1984); and planning
using temporal logic (Allen and Koomen, 1983).

What Are High-Level
Languages?

A programming language is developed to make
solving a certain class of problems easier. The lan-
guage provides the means for specifying the objects
and operations needed to solve the problem. For
example, FORTRAN was designed for numerical
computing and thus provides higher-level algebraic
primitives. Similarly, researchers in AI have invented

s '——'——'———'——7}ist:process'ingﬂl'a—ngru'agef—weuld—be—vel‘fy—usBfulfa'nd

their own programming languages with features de-
signed to handle AI problems. In fact, new ideas in Al
are often accompanied by a new language in which it is
natural to apply these ideas.

The kinds of problems most Al programming
languages are designed to solve have arbitrary sym-
bols as the objects to be manipulated. These symbols
can stand for anything, not just numbers; by means of
some data structure, relationships between symbols
can be represented. IPL, one of the earliest program-
ming languages of any kind, was the first to introduce
list processing as a means of forming associations of
symbols (McCorduck, 1979). IPL was created by New-
ell, Shaw, and Simon for their early Al work on
problem-solving methods and was designed using
ideas from psychology, especially the intuitive notion
of association.

List processing in IPL provided not only a mean-
ingful way of representing objects and their associa-
tions, but also a way of building data structures of
unpredictable shape and size. When parsing a sen-
tence, choosing a chess move, or planning robot
actions, one cannot know ahead of time the form of
the data structures that will represent the meaning of
the sentence, the play of the game, or the plan of the
action. Nor can the exact amount of memory that will
be needed be determined ahead of time. Since the
unconstrained form of data is an important character-
istic of AI programs, the general goal of data represen-
tation for any Al programming language is to provide
for convenient and natural representations of objects
and to free the programmer from the details of mem-
ory management.

In the summer of 1956, the first major workshop
on artificial intelligence was held at Dartmouth Col-
lege. At this workshop John McCarthy, one of the
organizers, heard a description of the IPL program-
ming language. McCarthy realized that an algebraic

proceeded to implement such a language on the IBM-
704 computer. This language, LISP, is the second-
oldest programming language currently in widespread
use (only slightly younger than FORTRAN).

In addition to its rich set of list-processing primi-
tives, three features of LISP have contributed to its
popularity among the Al community. First, LISP has
a style for describing computations that is different
from those of algorithmic languages such as FOR-
TRAN or PASCAL. Instead of specifying a sequence
of steps to solve a problem, LISP uses the application
of functions. The function definitions are patterned
after mathematical functions using lambda calculus
notation. From recursive function theory, McCarthy
took the idea of recursive function definitions, and

LISP became the first language to support recursion.

A second important feature of LISP is that it has
an interpretive execution environment that permits
interactive programming. Al programs tend to have
certain characteristics that greatly influence the prac-
tice of programming. First, they are big. Programmers
usually try to break the system down into several
discrete modules that can be written and tested sepa-
rately. Often AI projects are developed incrementally,
module by module. During this incremental develop-
ment, not-yet-written modules may be simulated by a
person interacting with the program. Also, since the
development of an Al program is usually a research
effort, programmers often find that the best way to
develop the program is to work with it interactively—
giving it a command, then seeing what happens. It was
primarily this last feature that prompted McCarthy to
design LISP as an interactive language.

Finally, LISP represents both functions (or pro-
grams) and data by the use of lists. Because programs
and data share a common representation, it is easy to
write LISP programs for handling LISP programs.
For example, a LISP interpreter itself may be written
in LISP. This feature also simplifies the automatic
generation and modification of LISP code and the
addition of extensions to the language for particular
applications.

Most Al languages in use today have been
designed as extensions to LISP. They offer some extra
functions, data types, and control structures that
augment the basic set LISP provides. Some of these
are PLANNER, FUZZY, QLISP, OPS-5 and SRL.
POP-2, the most common Al language in Great Brit-
ain, was developed by Al researchers at the University
of Edinburgh because a good implementation of LISP
was not available and because they wanted LISP-like
ideas in an ALGOL-like syntax.

PROLOG, the language chosen for this project, is
one_popular Al language that is not an _extension of
LISP (Clocksin and Mellish, 1981). PROLOG (PRO-
gramming in LOGic) is based on a first-order predi-
cate calculus representation and is implemented as a
resolution-based theorem prover. In most conven-
tional programming languages, the programmer speci-
fies the logic, or knowledge to be used in solving a
problem, and the control, the way in which the knowl-
edge is used. In logic programming, as advocated by
Kowalski, the logic and control components of algo-
rithms are separated, the programmer specifying only
the logic part (Kowalski, 1979). A programming lan-
guage that provides the means for stating what is to be
done but not how it is to be done is a nonprocedural
language (MacLennan, 1983). PROLOG uses a non-
procedural representation but includes procedural

11

semantics; the programmer provides the logic compo-
nent, while PROLOG provides the control compo-
nent. These procedural semantics may be manipulat-
ed to address such issues as multiple answers, control
of backtracking, and efficiency.

A program in PROLOG is structured like the
statement of a mathematical theorem and is divided
into three parts. First is a number of general principles
(or inference rules) that define the problem domain.
The second part is a statement of a number of particu-
lar facts. This part defines the relations among the
objects and is often referred to as the data base. The
third part is the statement of the goal (or the problem
to be solved) as a theorem to be proved. Proving the
theorem generates the answer.

In a world consisting of colored blocks to be
manipulated, for example, we would have facts about
the blocks and their relationships, such as

is__on(blue, red).
clear__top(blue).
is__on(red, table).

(Note: Variables in PROLOG: begin with upper-
case letters, and constants begin with lower case.)

The inference rule that says if BlockA is not the same
block as BlockB, and BlockA can be moved to the top
of BlockB, then is__on(BlockA, BlockB) is true and is
stated

is__on(BlockA, BlockB) :-
not(BlockA = BlockB),
move(BlockA, BlockB).
To prove the goal

- is__on(Block, red),

tion like PROLOG, the program states what result is
wanted without specifying how to get it. Because the
program sets forth the relations rather than the flow
of control, the programmer is relieved of the responsi-
bility for working out the steps of an algorithm and
specifying their order. This also means that showing a
program is correct is greatly simplified because only
the logic component of a program must be dealt with.

In examining PROLOG for the features that were
stated as important to Al programming, we find that
PROLOG has most of the features. PROLOG pro-
vides for symbol manipulation and for the defining of
data structures to handle the unpredictable shape and
size of the data. It can be executed interactively, and
the program and data share a common representation.

The program and data are both represented by
clauses of the general form

<head> :- <body> .

If the <head> is omitted, it is considered a goal; if
the :- <body> is omitted, it is considered a fact. Both
the <head> and the <body> are composed of pred-
icates of the form

predicate(term1, term2,...,termn),

with a term representing individual objects in the
problem domain and the predicate defining a relation
among the terms. In PROLOG a clause must be in
Horn clause form; <head> has at most one predicate
but <body> may have any number.

PROLOG does not have a fixed set of data struc-
ture constructors. Rather, a data structure is defined
implicitly by giving a description of the properties of
its operations. Thus, all data types are inherently
abstract data types. This is the nonprocedural ap-
proach to data structures.

In addition to-the features-already mentioned-as

the factis__on(blue, red) could be used: There exists a
block that is on the red block—the blue block. Or the
inference rule could be used for the proof. This would
find a block that is not the red one and, in proving the
subgoal, move(BlockA, BlockB), cause that block to
be moved to the top of the red block as a side-effect of
the proof procedure. The proof of is__on(Block, red) is
completed, and the result is a sequence of moves, or
proof statements, that place the block in the proper
position.

Thus, programs are expressed in the form of prop-
ositions that assert the existence of the desired result.
The theorem prover must construct the desired result
to prove its existence. In a nonprocedural representa-

12

being important, there are other features that make
PROLOG a convenient language to use. First, there is
no distinction between input and output variables so
that a single predicate may function in several differ-
ent ways. Consider the predicates from the previous
example and the goal

-is__on(X, Y).

If neither X nor Y were set to a value, then the goal
would be proved by finding

X = blue, Y = red
X =red, Y = table.

If X is set to the value blue, this goal would use the
fact is__on(blue, red) and find

Y = red.
With Y set to table, it would find
X = red.

One way of looking at this situation is that in PRO-
LOG, a program can be run either forward or back-
ward, as needed.

Finally, a program written in PROLOG is very
readable. Since programs are described in terms of
predicates and objects of the problem domain, pro-

grams are almost self-documenting. This characteris-

tic promotes clear, rapid, accurate programming.

Task Planning in a
Real-World Environment

These planning concepts have been applied to an
actual manipulator system termed the Sensor-Driven
Robot Systems Testbed, located at Sandia National
Laboratories (Donohoe, 1985). The Sensor-Driven
Robot Systems Testbed, as configured for this investi-
gation, includes a PUMA-560 robot manipulator with
an Astek Corporation force-sensing wrist capable of
resolving three independent axial forces and the asso-
ciated torques about those axes. In addition, a vision-
sensor subsystem (currently limited to binary vision)
provides object location and orientation information.

The “world” of the Sensor-Driven Robot Systems
Testbed currently consists of a table top supporting
discrete objects for manipulation. In this study,
50-mm cubes were manipulated. Each cube was
uniquely labeled with spots (as dice) to allow block
identification. A photograph of the Sensor-Driven
Robot Systems Testbed is shown in Figure 1.

Figure 1. Sensor-Driven Robot Systems Testbed

13

A CCD camera is shown mounted above the table
(painted flat black to provide high contrast), with
flood lamps for scene illumination. The large cylindri-
cal object mounted on the wrist of the PUMA manipu-
lator is the Astek Corporation force-sensing wrist. In
the background is the computer system dedicated to
image processing. A detailed description of the image-
processing subsystem is presented by Daily and Dono-
hoe (1985). The robot controller and supervisory com-
puters are not shown in Figure 1.

The system controlling the Sensor-Driven Robot
Systems Testbed consists of a hierarchical network of
computers, as illustrated in Figure 2. In a typical
situation, the vision subsystem communicates the ini-
tial state of the world (i.e., what objects are on the
table top and their respective locations and orienta-
tions). This information is communicated to the Local
Supervisor, which coordinates interactions with a
VAX-11/780 computer resident at the University of
New Mexico. The Local Supervisor is the primary
point of interaction for the operator. The Local Super-
visor communicates the initial world state and the
desired world state (provided by the operator) to the
PROLOG-based Planner resident on the VAX-11/
780. The Planner then formulates a series of robot
movements (in the VAL-II language of the PUMA-
560) to achieve the goal state configuration. These
VAL-II commands are communicated back to the
Local Supervisor, which in turn communicates with
the Robot Controller.

Simple sensory-based path control and error
detection is provided by the force-sensing wrist. For
example, the force-sensing wrist is used to determine
contact in the vertical direction during placement of
an object either on the table surface or upon another
object. To prevent an object’s being dropped, it is
released only after a prescribed force (~1 N) in the
vertical direction is exceeded. Error situations can be
detected by the appearance of unexpected forces at
the force-sensing wrist. One error situation that has
been effectively handled has been small errors in
object locations. If the inherent inaccuracies of the
vision system provide erroneous locations for the
objects to be manipulated, the robot gripper will
encounter an object at an unexpected height above the
table top. Typically, only one jaw of the two-jaw
gripper will strike the object, thus generating a torque
at the robot’s wrist. Since the torque is a vector
quantity, the Local Supervisor can determine the
proper direction to move the gripper in order for the
gripper to span the object. The Local Supervisor,
using this information, generates a correction trajec-
tory for the gripper, and a new attempt is made to
grasp the object. The process can be repeated any
number of times to compensate for object location
misinformation.

PLANNER
(VAX 11-780, UNM)
s
OPERATOR
| TNPUTS
LOCAL ,x////”
SUPERVISOR

(LSI-11, SANDIA)

4

|

FORCE SENSING
WRIST
(ASTEK CORPORATION)

VISION ROBOT CONTROLLER
(IMAGING (LSI-11)
TECHNOLOGY)

 Figure 2. Computer Hierarchy for Control of Sensor- Driven Robot Systems Testbed

14

Object manipulation by the PUMA-560 in the
Sensor-Driven Robot Systems Testbed is controlled
by the Planner. The Planner is based on ideas from
STRIPS and WARPLAN. In these codes, plans con-
sist of a sequence of actions, and each action is com-
posed of a triple: a list of preconditions necessary for
performing an action, the action itself, and the post-
conditions that describe the changes in the state of the
world once the action is performed. Unlike STRIPS, a
complete plan is never formulated in our planner, but
the planning and the execution of the plan are inter-
leaved. If a task is a primitive action, it is executed
immediately. Otherwise, the task is reduced to achiev-
ing subtasks. This allows the Planner to react more
efficiently to unexpected consequences of actions.

After establishing the initial positions of the
blocks with the binary vision system, the Planner
constructs its world model. The world model is a set of
predicates that describe the state of the world and
include the position of the arm, the number of blocks,
where they are on the table, which ones are parts of
stacks, and which ones have clear tops. Once the state
of the world is determined, the Planner enters into a
dialogue with the operator to determine the task
specification and then starts formulating a plan for

a

the sequence of moves the robot must make to com-
plete the task. Upon completion of the task, the goal
state becomes the initial world state for future block
manipulations. Selected PUMA-560 movements gen-
erated by the Planner to create a stack of five blocks at
an operator-requested location are shown in Figure 3.

Commands available are to STACK blocks, to
UNSTACK blocks, and to SEE the state of the world,
that is, to list the PROLOG predicates that comprise
the world model on the terminal. The operator may
choose to create a stack of blocks at a specific location
on the table or on top of a specific block. The Planner
reasons whether the requested stacking is possible,
considering the physical constraints imposed by the
size of the manipulator’s gripper. If the specified
location is too close to an existing stack, the Planner
will ask for further instructions; a new location may be
specified or the offending stack may be moved. In
generating the commands for moving blocks, the
Planner performs simple obstacle avoidance by
instructing the arm to lift a block over a stack if
necessary to avoid collision with the stack. In unstack-
ing, the Planner finds the closest possible location to
place the block on the table, keeping in mind the
physical constraints.

Figure 3. PUMA-560 Manipulation Sequence to Accomplish Block Stacking

15

16

[

Figure 3. Continued

Figure 3.

Continued

17

18

9

Figure 3. Concluded

Future Work

As it now exists, the Sensor-Driven Robot Sys-
tems Testbed represents a starting point for Planner
development. In particular, intelligent error recovery
is an important area for future work. An example of
intelligent error recovery would involve locating and
picking up an inadvertently dropped object. If the
robot manipulator dropped an object and, as a result,
could not complete a task, the Planner should not
only, for example, request an update on the state of
the world from the vision system but also indicate
what part of the visual scene must be analyzed and
which object is to be located. This can be very impor-
tant in relatively complex scenes that require exten-
sive analysis.

An additional intelligent error recovery capability
of interest is active interaction between the robot
manipulator and the primary sensors, such as vision.
If, for example, the vision subsystem cannot resolve a
scene completely because of touching or hidden
objects (e.g., one is behind another), the Planner, with
its knowledge of the history of the world and the
objects being manipulated, should be able to direct
the robot manipulator to move the camera to a loca-
tion helpful in resolving uncertainties. In addition,
rather than requesting that the vision system perform
a complete scene analysis, the Planner, with its knowl-
edge of what features it is looking for, could direct a
selected search of the visual image to enhance system
response time.

Thus, the general thrust for future work will
involve sensory enrichment of the system with more
intimate interactions between the sensory subsystems
and manipulator, with guidance from the Planner to
resolve incomplete or inconsistent knowledge.

References

Faletti, Joseph, “PANDORA—A Program for Doing Com-
monsense Planning in Complex Situations,” AAAI
1983, pp 185-88.

Fikes, Richard E. and Nilsson, Nils J., “STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving,” Artificial Intelligence 2, 1971, pp
189-208.

Fikes, Richard E.; Hart, Peter K.; and Nilsson, Nils J.,
“Learning and Executing Generalized Robot Plans,”
Artificial Intelligence 3, 1972, pp 251-88.

Green, Cordell, “Application of Theorem Proving to Prob-
lem Solving,” IJCAI, 1969, pp 219-39.

Hayes-Roth, Barbara, and Hayes-Roth, Frederick, Cogni-
tive Processes in Planning, Rand Corp Report R-2366-
ONR, 1978.

Kowalski, Robert, “Algorithm = Logic + Control,” Comm
of ACM 22:7, 1979.

MacLennan, Bruce J., Principles of Programming Lan-
guages: Design, Evaluation and Implementation, Holt,
Rinehart & Winston, 1983.

McCorduck, P., Machines Who Think, W.H. Freeman &
Co, 1979.

MecDermott, Drew, “Planning and Acting,” Cognitive Sci-
ence 2, 1978, pp 71-109.

Robinson, J. A., “A Machine-oriented Logic Based on the
Resolution Principle,” J ACM 12:1, 1965.

Sacerdoti, Earl D., “Planning in a Hierarchy of Abstraction
Spaces,” Artificial Intelligence 5, 1973, pp 115-35.

Siklossy, L., and Dreussi, J., “An Efficient Robot Planner
Which Generates Its Own Procedures,” [JCAI, 1973, pp
423-30,

Stefik, Mark J., “Planning with Constraints,” Stanford Uni-
versity Ph.D. Thesis, 1980.

Sussman, Gerald J., A Computational Model of Skill Acqui-
sition, MIT Al Lab Technical Report AI-TR-297, Au-
gust 1973.

Tate, Austin, “Interacting Goals and Their Use,” IJCAI,
1975, pp 215-18.

Waldinger, Richard, “Achieving Several Goals Simulta-
neously,” Readings in Artificial Intelligence, B. Web-

Allen, James F., and Koomen, Johannes A., “Planning Using
a Temporal World Model,” Proc International Joint
Conf on Artificial Intelligence (IJCAI), 1983, pp 741-
417,

Clocksin, W. F., and Mellish, C. S., Programming in Prolog,
Springer-Verlag, 1981,

Cromarty, A. S.; Shapiro, D. G.; and Fehling, M. R.,“Still
planners run deep’: Shallow reasoning for fast replan-
ning,” SPIE Applications of Artificial Intelligence,
1984.

Daily, M. J., and Donohoe, G. W., Visual Control of a Robot
Arm for Object Manipulation, SAND85-0681 (Albu-
querque, NM: Sandia National Laboratories, June
1985).

Donohoe, G. W., “A Testbed for Sensory Control of Intelli-
gent Machines,” 6th IASTED International Symp on
Robotics and Automation, May 1985.

ber and N. Nilsson, ed, Tioga Pub Co, 1981.

Ward, Blake, and McCalla, Gordon, “Error Detection and
Recovery in a Dynamic Planning Environment,” AAAI,
1983, pp 172-75.

Warren, David H. D., “WARPLAN: A System for Generat-
ing Plans,” Dept Computational Logic, Memo No. 786,
Univ of Edinburgh, 1974,

Wilensky, Robert, Planning and Understanding: A Compu-
tational Approach to Human Reasoning, Addison-
Wesley, 1983.

Wilkins, D. E., “Domain-independent Planning: Represen-
tation and Plan Generation,” Artificial Intelligence
22:3, 1984, pp 269-301.

19-20

